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14260

ABSTRACT

This paper discusses the behavior of currents and fields
along a structured superconductor. First the effect of surface
structure on supercurrents is investigated. Then the effect of
structure on the critical nucleation field is discussed in two
cases, one with the magnetic field parallel to the ripples and
the other with the field parallel to the grating wavenumber. In
the first case, it is found that the critical field is reduced J
as a function of grating height, whereas in the latter case it
is increased. Finally, the relevance of this work for laser-
induced chemistry above a superconducting surface is discussed.
The Ginzburg-Landau model is used throughout.

INTRODUCTION

The enormous recent interest in superconductivity (11 is no
longer worthy of remark. In this paper, we shall not discuss
the fundamental theory behind the phenomenon, nor shall we
consider the specific structure of any given material. Instead,
we shall investigate a generic superconducting material along
the surface of which is inscribed a sinusoidal grating. We are
ultimately interested in investigating the optical properties of
thin films, which we suppose have microscopic roughness on the
surface. While we are not yet able to treat the time-dependent
problem satisfactorily, we shall discuss the response of the
rippled surface to external fields. We wish to use the
Ginzburg-Landau theory [2) to analyze the effect of the grating
amplitude on the current, the superelectron density and, most I.

importantly, on the critical nucleation field. The reason for
doing this is to get a better idea of how a thin-film
superconductor will respond to external fields. While we are at
present restricted to static fields (the Ginzburg-Landau theory
is not time dependent), we suppose the result to be valid in the
low-frequency domain. We hope, eventually, to develop an
explicit time-dependent model.

The Ginzburg-Landau (GL) model is very appropriate here.
Its validity is largely independent of the microscopic causes of
superconductivity, the microscopic theory being used only to o
evaluate necessary parameters. Further, it is an expansion in M
terms of the order parameter, the superelectron density, which
may be expected to go to zero at the critical temperature.
Hence the limiting condition is not what the critical
temperature is, nor what the microscopic causes are, but simply
that the temperature be close to T . Thus we expect our current -
results to apply equally to the ne high-Tc ceramic materials as
to more traditional substances.

In the next section, we shall discuss the effect of the
grating amplitude on the supercurrent. Then we shall consider
the critical nucleation field for two cases: the magnetic field
parallel to the wavenumber (x-direction) and parallel to the
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ripples (y-direction). We shall find that the critical field is
reduced in the first case, while it is increased in the second.
Finally, we shall consider some implications of this work for
optics and chemistry above superconducting surfaces.

ELECTRON DENSITY AND SUPERCURRENTS

The behavior of the GL equation near a flat surface has
been discussed by de Gennes (3]. We have extended this result
to allow for a rippled surface [41 by solving a two-dimensional
elliptic equation rather than the one-dimensional harmonic
equation. A more detailed discussion appears in that reference.
A problem arises in choosing the proper boundary conditions.
The appropriate boundary condition for the GL equation at a
surface is

(-7 -- A),J = ,(1)

2 c n

This condition can be satisfied in at least two ways. We can
impose Dirichlet boundary conditions, where we set b = 0, which
implies i = 0, or we can impose von Neumann boundary conditions,
where b = =. The electron density function is, of course,
strongly dependent on which boundary conditions one chooses.
Figures 1 and 2 illustrate the differences. Figure 1 shows the
effect of the Dirichlet conditions at the ripples. Here the
density is sharply reduced in the "fingers". Conversely, the
density calculated from imposing von Neumann conditions is shown
in Fig. 2. Here the derivative of the wavefunction is zero
across the boundary. Note that the greatest electron density is
just below the ripples.

Z 0

Figure 1 Figure 2
The electron density near The electron density near
a rippled surface given a rippled surface given
Dirichlet boundary con- von Neumann boundary con-
ditions. See Ref. 4 for ditions. See Ref. 6 for
details. The z-coordinate details.
denotes the normal dis-
tance from the surface
into the interior of the
material.



Let us now restrict our attention to the Dirichlet problem,
and this for the following reason. we are using the linearized
GL equation to solve the problem. The linear equation is valid
as long as i is much smaller than , where IT. is the bulk
value of the superelectron density. There are at least two ways
in which this approximation can be made valid. One is when we
are near the surface and the Dirichlet conditions hold, and the
other is for an external field very near the critical field.
Since we are presently considering currents, and not fields, we
are thus restricted by the linear approximation to the Dirichlet
condition. DeGennes has shown from an analysis based on the
microscopic theory (BCS) that superconductors in zero field obey
the Dirichlet conditions. In subsequent sections we shall
consider the high field case where the von Neumann conditions
are appropriate.

It has been found [4] that ripples increase the current
path length. The ripples create vortices in the current flow.
However, it has also been discovered that the ripples provide
essentially the same Meissner-effect shielding as a "bulk"
surface would. Hence, if the goal is to maximize current flow,
then as flat a surface as possible is desirable. Conversely, if
the purpose is to provide a constant current impervious to small
changes in the external field, then the ripples are desirable.

CRITICAL NUCLEATION FIELD PARALLEL TO GRATING WAVENUMBER

It is interesting to calculate the critical field at which
superconductivity can nucleate near a surface in a decreasing
magnetic field, H . At this critical field, the superelectron
density must be infinitesimal and the linearized version of the
GL equations becomes accurate. The analogous nucleation problem
for the bulk material, or near a flat surface, has been solved
by deGennes and Saint-James [3,5]. It is found that H for a
flat surface is 1.695.H where H is the critical figid for
the bulk. c2' c2

We have investigated the critical nucleation field for a
superconducting surface with a sinusoidal grating [6). In this
case, two mutually perpendicular directions along the surface
must be distinguished. In this section, we shall consider the
field to be parallel to the grating wavenumber, which we shall E
consider to be the x-direction. Then translational symmetry
along this axis disappears, and the GL equation becomes two-
dimensional. We use the von Neumann boundary conditions for the M
nucleation problem since we are interested in the superelectron
density at the surface, precluded under the Dirichlet -
conditions. The problem is to find the maximum field under
which the GL equation has a bound solution, i.e., the
wavefunction must decay exponentially into the interior of the
material. This equation must be solved numerically. There is a
further parameter, namely the supercurrent density in the y-
direction (parallel to the ripple), and this is chosen
variationally to minimize the eigenvalue, which corresponds to
maximum field.

Under these circumstances, it is found that the critical
field decreases as a function of grating amplitude (Fig. 3).
In the limit of infinitely large amplitude, it is found that the
nucleation field approaches that of the bulk limit, which is to
be expected from an analysis of a series of parallel thin films.
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02 Nucleation critical field
024 vs. grating amplitude for

a field oriented parallel
022 to the grating wavenumber.

See Ref. 6 for details.Z The unit for the field isoI0 2ffm*caI/Ke.
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CRITICAL NUCLEATION FIELD PARALLEL TO THE RIPPLE

Another interesting case we now consider is the nucleation
field in the ripple direction (y-direction). The gauge for the
vector potential is

= (Hyz, 0, 0)

The GL equation can be written as

a fI - ) + iLL + (-j-- f(x,z)
ax2 az 2 + $0 ax 2 0 (2)

- 2 f(x,z)

where

= hc

and we have used the ansatz

ik y
=e Y (x,z),

due to translational symmetry along the y-axis. Equation (2) _
must be supplemented by the von Neumann bounaary conditions atthe surface, given by Eq. (1) with b = -. The critical field - -

must be the maximum H at which one can find a bound solution,
i.e., the wavefunction Aust decay exponentially into the bulk.
There we set the boundary condition so that the magnitude of the 0
wave-function must be constant at constant z. The phase of the
wavefunction, at this bottom boundary, is a variational
parameter, chosen to maximize the nucleation field. Unlike the
previous case, our calculation shows that the critical field
increases as a function of grating amplitude (Fig. 4). Here we
have used units such that H /4 = I. it is expected that the
value of the critical fielA will reach the value for
superconducting films, with a thickness of the same order as the
period of the structure. It is noted that if the thickness of a
film is much smaller than the GL coherence length, the critical
field must be much greater than the bulk value.
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Figure 4
Nucleation critical field04- vs. grating amplitude for
a field oriented parallelto the ripples. The units

0are the same as for Fig.
0.3- 3.
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Grating AmrlItude (GL Coherence Lengths)

CONCLUSIONS

We have considered the Lehavior of a Ginzburg-Landausuperconductor as a function of grating amplitude. We havediscussed the two types of problems for which the linearized GLtheory is relevant. These are the current density whenDirichlet conditions apply, and the critical nucleation fieldwhen Von Neumann conditions apply. In subsequent work, we hopeto remove the linear condition (i.e. find a quick way of solvingthe nonlinear equation), and we would also like to remove the
condition of static fields.

We have found that if the magnetic field is oriented in adirection parallel to the ripples, then the nucleation field isincreased. Conversely, if the field is oriented in thedirection of the wavenumber, then the nucleation field isdecreased. It follows that if an incident laser of frequency t Swell below the gap frequency is p-polarized with respect to thesurface, the intensity of the laser could be stronger than wouldotherwise be possible, and still not destroy the existence ofthe superconducting phase along the surface. Similarly, if thelaser is s-polarized, the surface nucleation field reduces tothat of the bulk in the large amplitude limit.
This research forms the first step in elucidating thebehavior of a superconducting surface under laser irradiation.In order to finish this project, it will be necessary toconsider the frequency dependence of the GL equations, and alsoto consider the relation between the superconducting electrons,the normal electrons, and the resulting dielectric constant ofthe material. Given this information, it will be very

interesting to calculate such observables as the reflectivity ofa superconducting grating, to consider the existence or non-existence of plasmon waves along the surface, or to evaluate the
response of a molecular dipole above the surface.

I



We close with a few words about the validity of GL theory
when applied to the new high T superconductors. It appears
that the Pippard coherence length 8f the ceramics is on the
order of 4A, which is much too short to make the present
calculation worthwhile. However, the GL coherence length is a
function of temperature and increases as the temperature
approaches the critical value, although as the temperature comes
very near the critical value, fluctuation effects will dominate
and invalidate our calculation. Thus we suppose that for higher
temperatures, above liquid nitrogen, some of the calculated
results here should be observable. In paticular, the
qualitative variation of the behavior of the critical field
depending on orientation should be measurable.
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